
Corso di Laurea in

Informatica

Approfondimento:

Sincronizzazione
Architettura dei Calcolatori

Prof. Andrea Marongiu

andrea.marongiu@unimore.it

Anno accademico 2018/19

Motivation: “Too much milk”

• Example: People need to coordinate:

Arrive home, put milk away3:30

Buy milk3:25

Arrive at storeArrive home, put milk away3:20

Leave for storeBuy milk3:15

Leave for store3:05

Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

• Program is a collection of processors (or threads of control).
• Each processor/thread has a set of private variables (e.g., local stack variables)
• Also a set of shared variables, (e.g., static variables, or global heap).

– Processors communicate implicitly by writing and reading shared variables.
– Processors coordinate by synchronizing on shared variables

PnP1P0

s
s = ...

y = ..s ...

Shared memory

i: 2 i: 5 Private
memory

i: 8

Shared Memory Synchronization

Thread 1

for i = 0, n/2-1
s = s + sqr(A[i])

Thread 2

for i = n/2, n-1
s = s + sqr(A[i])

static int s = 0;

• Problem is a race condition on variable s in the program
• A race condition or data race occurs when:

- two processors (or two threads) access the same
variable, and at least one does a write.

- The accesses are concurrent (not synchronized) so they
could happen simultaneously

Shared Memory code for computing a
sum

Thread 1
….
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

Thread 2
…
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

static int s = 0;
3 5A f = square

Shared Memory code for computing a
sum

• Assume A = [3,5], f is the square function, and s=0 initially
• For this program to work, s should be 34 at the end

Thread 1
….
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

Thread 2
…
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

static int s = 0;

9

3 5A f = square

Shared Memory code for computing a
sum

• Assume A = [3,5], f is the square function, and s=0 initially
• For this program to work, s should be 34 at the end

Thread 1
….
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

Thread 2
…
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

static int s = 0;

9 25

3 5A f = square

Shared Memory code for computing a
sum

• Assume A = [3,5], f is the square function, and s=0 initially
• For this program to work, s should be 34 at the end

Thread 1
….
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

Thread 2
…
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

static int s = 0;

9 25
0

3 5A f = square

Shared Memory code for computing a
sum

• Assume A = [3,5], f is the square function, and s=0 initially
• For this program to work, s should be 34 at the end

Thread 1
….
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

Thread 2
…
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

static int s = 0;

9 25
0 0

3 5A f = square

Shared Memory code for computing a
sum

• Assume A = [3,5], f is the square function, and s=0 initially
• For this program to work, s should be 34 at the end

Thread 1
….
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

Thread 2
…
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

static int s = 0;

9 25
0 0

25

3 5A f = square

Shared Memory code for computing a
sum

• Assume A = [3,5], f is the square function, and s=0 initially
• For this program to work, s should be 34 at the end

Thread 1
….
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

Thread 2
…
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

static int s = 0;

9 25
0 0

25
25

3 5A f = square

Shared Memory code for computing a
sum

• Assume A = [3,5], f is the square function, and s=0 initially
• For this program to work, s should be 34 at the end

Thread 1
….
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

Thread 2
…
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

static int s = 0;

9 25
0 0
9 25

25

3 5A f = square

Shared Memory code for computing a
sum

• Assume A = [3,5], f is the square function, and s=0 initially
• For this program to work, s should be 34 at the end

Thread 1
….
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

Thread 2
…
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

static int s = 0;

9 25
0 0
9 25

259

3 5A f = square

Shared Memory code for computing a
sum

• Assume A = [3,5], f is the square function, and s=0 initially
• For this program to work, s should be 34 at the end

Thread 1
….
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

Thread 2
…
compute f([A[i]) and put in reg0
reg1 = s
reg1 = reg1 + reg0
s = reg1
…

static int s = 0;

• Assume A = [3,5], f is the square function, and s=0 initially
• For this program to work, s should be 34 at the end

• but it may be 34, 9, or 25

9 25
0 0
9 25

259

3 5A f = square

Shared Memory code for computing a
sum

Thread 1

local_s1= 0
for i = 0, n/2-1

local_s1 = local_s1 + sqr(A[i])

s = s + local_s1

Thread 2

local_s2 = 0
for i = n/2, n-1

local_s2= local_s2 + sqr(A[i])

s = s +local_s2

static int s = 0;

Shared Memory code for computing a
sum

Thread 1

local_s1= 0
for i = 0, n/2-1

local_s1 = local_s1 + sqr(A[i])

s = s + local_s1

Thread 2

local_s2 = 0
for i = n/2, n-1

local_s2= local_s2 + sqr(A[i])

s = s +local_s2

static int s = 0;

Shared Memory code for computing a
sum

ATOMIC ATOMIC

Atomic Operations
• To understand a concurrent program, we need to know

what the indivisible operations are!

• Atomic Operation: an operation that always runs to
completion or not at all
• It is indivisible: it cannot be stopped in the middle and state

cannot be modified by someone else in the middle
• Fundamental building block – if no atomic operations, then have

no way for threads to work together

• On most machines, memory references and assignments
(i.e. loads and stores) of words are atomic

Definitions
• Synchronization: using atomic operations to ensure

cooperation between threads
– For now, only loads and stores are atomic
– hard to build anything useful with only reads and writes

• Mutual Exclusion: ensuring that only one thread does a
particular thing at a time
– One thread excludes the other while doing its task

• Critical Section: piece of code that only one thread can
execute at once
– Critical section and mutual exclusion are two ways of describing

the same thing
– Critical section defines sharing granularity

More Definitions
• Lock: prevents someone from doing something

– Lock before entering critical section and
before accessing shared data

– Unlock when leaving, after accessing shared data

– Wait if locked
• Important idea: all synchronization involves waiting

• Example: fix the milk problem by putting a lock on refrigerator
– Lock it and take key if you are going to go buy milk

Thread 1

local_s1= 0
for i = 0, n/2-1

local_s1 = local_s1 + sqr(A[i])

s = s + local_s1

Thread 2

local_s2 = 0
for i = n/2, n-1

local_s2= local_s2 + sqr(A[i])

s = s +local_s2

static int s = 0;

Shared Memory code for computing a
sum

Thread 1

local_s1= 0
for i = 0, n/2-1

local_s1 = local_s1 + sqr(A[i])

s = s + local_s1

Thread 2

local_s2 = 0
for i = n/2, n-1

local_s2= local_s2 + sqr(A[i])

s = s +local_s2

static int s = 0;

Shared Memory code for computing a
sum

ATOMIC ATOMIC

Thread 1

local_s1= 0
for i = 0, n/2-1

local_s1 = local_s1 + sqr(A[i])

s = s + local_s1

Thread 2

local_s2 = 0
for i = n/2, n-1

local_s2= local_s2 + sqr(A[i])

s = s +local_s2

static int s = 0;
static lock lk;

lock(lk);

unlock(lk);

lock(lk);

unlock(lk);

Shared Memory code for computing a
sum

How to implement locks?

• Need HW support for atomic instructions
• RISCV uses two HW primitives

• Load reserved
• Store conditional

• (see discussion in Chapter 2: Instructions,
language of the computer, slides 61-63)

